Maximum modulus principle for “holomorphic functions” on the quantum matrix ball

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maximum Principle for Harmonic Functions

Some generalizations of the maximum principle for harmonic functions are discussed. §

متن کامل

Free Holomorphic Functions on the Unit Ball Of

In this paper we continue the study of free holomorphic functions on the noncommutative ball [B(H)]1 := n (X1, . . . , Xn) ∈ B(H) n : ‖X1X ∗ 1 + · · ·+ XnX ∗ n‖ 1/2 < 1 o , where B(H) is the algebra of all bounded linear operators on a Hilbert space H, and n = 1, 2, . . . or n = ∞. Several classical results from complex analysis have free analogues in our noncommutative setting. We prove a maxi...

متن کامل

Free Holomorphic Functions on the Unit Ball of B(h)

1. Free holomorphic functions and Hausdorff derivations 2. Cauchy, Liouville, and Schwartz type results for free holomorphic functions 3. Algebras of free holomorphic functions 4. Free analytic functional calculus and noncommutative Cauchy transforms 5. Weierstrass and Montel theorems for free holomorphic functions 6. Free pluriharmonic functions and noncommutative Poisson transforms 7. Hardy s...

متن کامل

Hyperbolic Mean Growth of Bounded Holomorphic Functions in the Ball

We consider the hyperbolic Hardy class %Hp(B), 0 < p < ∞. It consists of φ holomorphic in the unit complex ball B for which |φ| < 1 and sup 0<r<1 ∫ ∂B {%(φ(rζ), 0)} dσ(ζ) < ∞, where % denotes the hyperbolic distance of the unit disc. The hyperbolic version of the Littlewood-Paley type g-function and the area function are defined in terms of the invariant gradient of B, and membership of %Hp(B) ...

متن کامل

Moduli of bounded holomorphic functions in the ball

We prove that there is a continuous non-negative function g on the unit sphere in C d, d ≥ 2, whose logarithm is integrable with respect to Lebesgue measure, and which vanishes at only one point, but such that no non-zero bounded analytic function m in the unit ball, with boundary values m⋆, has |m⋆| ≤ g almost everywhere. The proof analyzes the common range of co-analytic Toeplitz operators in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2019

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2018.09.003